
Random field Ising model in the Bethe-Peierls approximation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 315

(http://iopscience.iop.org/0305-4470/18/2/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 17:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 315-320. Printed in Great Britain 

Random field Ising model in the Bethe-Peierls approximation 
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Abstract. The random field Ising model is solved numerically in the Bethe-Peierls 
approximation. For a model with a two-peak &distribution, the transition is first order at low 
temperatures and second order at high temperatures, and the tricritical point appears as an 
inflection point of the transition curve. The behaviour at low temperatures is analysed 
analytically as a function of the coordination number, and compared with the mean-field 
prediction. 

1. Introduction 

The effects of a random quenched magnetic field upon the critical behaviour near a 
ferromagnetic phase transition has attracted considerable attention in recent years (for 
a general review see Imry 1984). The simplest way to treat this problem is by the 
mean-field approximation. This was carried out by Schneider and Pytte (1977) for a 
model with a Gaussian distribution of fields and led to a line of second-order transitions. 
Aharony (1978) considered more general distributions. In particular he showed that 
for a two-peak &distribution there is a tricritical point and that at sufficiently low 
temperatures the phase transition becomes first order. 

The Bethe-Peierls approximation is an improvement over the mean-field approxi- 
mation, since it takes into account specific short-range order. In a pure system (i.e., 
in the absence of the random field) the equations of the Bethe-Peierls approximation 
describe exactly the Bethe lattice (Bethe 1935). In the presence of the random field 
this is not the case. 

The random field Ising ferromagnet of a Bethe lattice was investigated by Bruinsma 
(1984) and Entin-Wohlman and Domb (1984). Bruinsma considered in detail the 
ground state at T = 0 and argued that at T = 0 the critical behaviour is mean field like. 
Entin-Wohlman and Domb have found that an iterative solution of the recursion 
relation of the Bethe lattice leads to the same low-temperature series as derived from 
the linked-cluster expansion (Domb 1970). They have shown that such an expansion 
is possible if the random field distribution is bounded to finite values of the random 
field. When it is not so (e.g., a Gaussian distribution) the lowest energy state will 
contain overturned spins and will not correspond to a complete ferromagnetic order. 
The analysis of the low-temperature series for a two-peak &distribution has indicated 
that at sufficiently low temperature the transition is first order, while close enough to 
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the transition temperature T, of the pure system it is second order (Entin-Wohlman 
and Domb 1984). 

In order to explore the whole temperature range (0 < T < T,) we consider in this 
paper the Bethe-Peierls approximation for the random field Ising model with a two-peak 
S-distribution. Unlike the case of the Bethe lattice, the equations of the Bethe-Peierls 
approximation can be exactly solved. We find that the transition line has an inflection 
point at the tricritical point. At very low temperatures and in the temperature range 
close to T, the results agree with those of the Bethe lattice (Entin- Wohlman and Domb 
1984). We discuss the large coordination number limit and compare it with the 
predictions of the mean-field treatment (Aharony 1978). 

2. The Bethe-Peierls approximation 

In the Bethe-Peierls approximation one retains the interaction of a single spin m0 and 
its surrounding q-neighbours, and takes into account the other spins only by way of 
a molecular field H‘ which acts upon the q-neighbouring spins. Thus the Hamiltonian 
of the central spin a. and its q nearest neighbours reads 

2p-J f a0aJ-HH,a,- f (HJ+H’)CI .  
j =  I J = i  

Here the first term describes the Ising interaction between a, and its nearest neighbours 
and H,  is the random field acting upon a, ( I  = 0, 1,. . . , 4). The field H’ that the 
neighbours of the central spin feel is not only taken as independent of the other spins, 
but also independent of the random fields on the other sites. This is an approximation 
even on a Bethe lattice. Thus, contrary to the pure case, the Bethe approximation for 
the random field Ising model is not exact on the Bethe lattice. The molecular field H‘ 
is determined by the condition that the average of a, is equal to the average of aj 
( j  = I ,  2 ,  . . . 4). The average of a, is given by 

(ao)=Il(z+-z-)/(z++ z - ) l a v ,  ( 2 )  

where 

and [ 
given by 

denotes an average upon the random field distribution. The average of ul is 

(4) 

Equating equation ( 2 )  to equation (4) yields an equation for the molecular field 
H’-this is the self-consistency equation of the Bethe-Peierls approximation. Inserting 
the solution into either ( 2 )  or (4) gives the magnetisation (per spin) as a function of 
temperature and the random field distribution. 

When the random field obeys a two-peak S-distribution 

P ( H )  = f [ 6 ( H  - h ) +  6 ( H  + h ) ] ,  ( 5 )  
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it is straightforward to follow numerically the procedure outlined above. Introducing 
the variable T 

T = tanh PH’ ( 6 )  

((TO) - (a,) = 0 (7) 

we solve the equation 

to find T as a function of h /  J and t = T /  T,, where T, is the pure system ( h  = 0) 
transition temperature. Figure 1 depicts the LHS of equation (7), as a function of T ,  

for the case q = 3. The solution T = 0 corresponds to zero magnetisation ((c0) = 0). At 
high enough values of h / J ,  only this solution survives. The behaviour of the other 
solution is rather interesting. Starting at high temperatures (close to T,) we see that 
the solution approaches zero as h / J  increases (figure l ( a ) ) .  However, at lower 
temperatures the function changes its behaviour (figure 1 (6)). A third solution appears 

Figure 1. The LHS of equation ( 7 )  for various values of h /  J in the case q = 3. ( a )  T /  T, = 0.7, 
( b )  T /  T, = 0.53. 

(the intermediate solution in figure I(6)) which is of no interest (for this solution T 

increases with h /  J, leading to an increase in the magnetisation as h /  J increases). The 
rightmost solution decreases as h /  J increases, until it suddenly disappears. When this 
solution is inserted into equation (2) it causes the magnetisation to jump from some 
finite value to zero, and thus to go through a first-order transition. We portray the 
behaviour of the magnetisation as a function of h /  J for various values of t in figure 2. 

We have checked the behaviour of the free energy as a function of T (equation 
(6)) and the results are depicted in figure 3 for the case q = 3. The free energy is given 
by 

F =  -(1/P)[ln(z++z-)I,w (8)  

and it is a monotonically decreasing function of T. Therefore the highest possible 
solution for T corresponds to the lowest possible free energy. 

By scanning the ( h / J ) - t  plane we have obtained the transition line above which 
the magnetisation is zero. We have found that this line has an inflection point where 
the transition changes from second order (high-temperature side) to first order. This 
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Figure 2. The magnetisation (coo) for the 
case q = 3 .  

Figure3. The free energy as a function of 7 for the case 9 = 3. ( a )  
T /  T, = 0.7, ( b )  T /  T, = 0.53 (the y-axis is in arbitrary units). 

is shown in figure 4 for the cases q = 3 and q = 6 .  One sees that the first-order transition 
line approaches the point 1 = 0 as a straight line. Moreover, as q increases, this line 
becomes steeper. The equation of this line can be found by examining equation ( 7 )  
at low temperatures. To this end we introduce the notations 

9 , A, = e-*PH,. (9a, b, c)  = e - 2 P J  e = e -2PH' 

Using these notations in equation ( 7 )  we get an equation for 8 

8 A l  - A  
1 + zOh, + ( z  + BA , ) A  

where 

L I I 

0 0.5 I O  

Figure 4. The transition lines for the cases q = 3 and 9 = 6 ,  represented by the dotted curves 
(the dots are the result of the numerical analysis). The inflection points ( t  = 0.63, h / J  = 0.62 
for 9 = 3, I = 0.45, h/ J = 2.35 for 9 = 6 )  mark the change in the order of the transition from 
second (high-temperature side) to first-order transition. The broken lines represent equation 
(17) (see text). 
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To lowest order in .z equation (10) yields 

e = [ z +  e( 1 - z*)m,]q- l ,  

ml = (13) 

(12) 

where 

Equation (12) is the same as that obtained in the analysis of the low-temperature series 
of the Bethe lattice (Entin-Wohlman and Domb 1984). Its derivation is based upon 
the requirement that em, < z, i.e., zq -*m,  < 1. I t  has been shown (Entin-Wohlman and 
Domb 1984) that this condition is satisfied for a two-peak &distribution or, more 
generally, for any bounded distribution such that h < J ( q - 2 )  where * h  are the 
distribution bounds. It is not satisfied for an unbounded distribution, e.g., a Gaussian 
distribution. Inspection of (12) reveals that it has a solution provided that 

(14) 2 ( l - q ) / ( q - 2 ) *  e [ml(q - 1 ) ( I -  z 11 
Equations (12), (13) and (14) yield a line in the h/ J - t  plane 

(15) 

Above this line equation (12) has no solution. Returning to the original equation ( 10) 
for 0, we see that 0 = 1 is also a possible solution, provided that the random field 
distribution P ( H )  is symmetric in H. The magnetisation is given (from equations (2) 
and (9-1 1)) by 

z ( q - 1 ) / ( q - 2 ) = [ m 1 ( l - Z 2 ) ( q - 1 ) 1  1 / (2 -q)  . 

This vanishes for 8 = 1 and a symmetric distribution. On the other hand, (go) is finite 
below the line given by equation ( 15). Thus we conclude that ( 15) gives the first-order 
transition line at low temperatures. 

When the random field obeys the distribution (9, equation (15) gives 

where we have used 2p,J = ln[q/(q - 2 ) ] .  The lines obtained from (17) are shown in 
figure 4. In the cases q = 3 and q = 6, they coincide with the transition lines found in 
the numerical procedure. When q becomes very large, the line becomes steeper (e.g., 
q = IO9 in figure 4). The large-q limit is expected to yield the mean-field behaviour. 
We have therefore re-examined the mean-field treatment with a two-peak &distribution 
(Aharony 1978) in the T=O limit. Aharony finds that the magnetisation M is the 
solution of the equation 

M = [tanh p (qJM + H, )Iav. 

M =&[tanh p ( q J M +  h ) +  tanh p ( q J M  - h ) ] .  

(18) 

Averaging over the random field with the distribution (5) 

(19) 

In the /3 + CO limit, the R H S  yields zero unless h < qJM, in which case it gives 1. Thus 
on the T = 0 line the magnetisation is one below h / q J  = 1 and zero above, in accordance 
with the Bethe-Peierls approximation in the high-q limit. 
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On the other hand, when the random field distribution is not bounded we cannot 
expand (10) for small 8 at low temperatures. It follows that the solution of (10) is 
8 = 1 which corresponds to (ao) = 0. Thus, for unbounded distributions, the mean-field 
treatment is in disagreement with the Bethe-Peierls approximation in the low- 
temperature range. 

3. Discussion 

We have analysed the random field Ising model in the Bethe-Peierls approximation. 
In particular, we have discussed the first-order transition line at low temperatures. The 
discussion is confined to symmetric distributions. When the distribution is non- 
symmetric, a zero magnetisation is never a solution (unless one adds a uniform field). 
Our results agree with the series expansion analysis of the Bethe lattice (Entin-Wohlman 
and Domb 1984). 

The main feature of the transition curve for a two-peak &distribution is the inflection 
point at the tricritical point. Unfortunately, we have not succeeded in analysing this 
point (e.g., as a function of q )  analytically. It is quite straightforward to obtain the 
equation for the second-order transition line for small random fields and the vicinity 
of T,. The result is 

w (  q - 1){ 1 - M2[ 1 - w + ( q  - 2 ) w 2 ] }  = 1 ,  (20)  

where 

w = tanh PJ, M 2  = [tanh2 /3Hj],,. 

However, this is valid only in a small region close to T,. The inflection point occurs 
far away from there (see figure 4), and expansions around it are too complicated. 

In a pure system, the Bethe-Peierls approximation describes the main features of 
the phase transition fairly well. We hope to deal with its relevance to the behaviour 
of the random field Ising model on standard lattices in the near future. 
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